Post by Nadica (She/Her) on Jul 17, 2024 23:05:06 GMT
Mathematical analysis of simple behavioral epidemic models - Published July 14, 2024
Highlights
•Endogenous behavioral feedback improves fit of simple epidemic models to data.
•Mathematical properties of models with waning immunity better fit COVID dynamics.
•Epidemic models with behavioral feedback can be structurally identifiable.
•Sensitivity over short epidemics does not differ with waning immunity.
Abstract
COVID-19 highlighted the importance of considering human behavior change when modeling disease dynamics. This led to developing various models that incorporate human behavior. Our objective is to contribute to an in-depth, mathematical examination of such models. Here, we consider a simple deterministic compartmental model with endogenous incorporation of human behavior (i.e., behavioral feedback) through transmission in a classic Susceptible-Exposed-Infectious-Recovered (SEIR) structure. Despite its simplicity, the SEIR structure with behavior (SEIRb) was shown to perform well in forecasting, especially compared to more complicated models. We contrast this model with an SEIR model that excludes endogenous incorporation of behavior. Both models assume permanent immunity to COVID-19, so we also consider a modification of the models which include waning immunity (SEIRS and SEIRSb). We perform equilibria, sensitivity, and identifiability analyses on all models and examine the fidelity of the models to replicate COVID-19 data across the United States. Endogenous incorporation of behavior significantly improves a model’s ability to produce realistic outbreaks. While the two endogenous models are similar with respect to identifiability and sensitivity, the SEIRSb model, with the more accurate assumption of the waning immunity, strengthens the initial SEIRb model by allowing for the existence of an endemic equilibrium, a realistic feature of COVID-19 dynamics. When fitting the model to data, we further consider the addition of simple seasonality affecting disease transmission to highlight the explanatory power of the models.
Highlights
•Endogenous behavioral feedback improves fit of simple epidemic models to data.
•Mathematical properties of models with waning immunity better fit COVID dynamics.
•Epidemic models with behavioral feedback can be structurally identifiable.
•Sensitivity over short epidemics does not differ with waning immunity.
Abstract
COVID-19 highlighted the importance of considering human behavior change when modeling disease dynamics. This led to developing various models that incorporate human behavior. Our objective is to contribute to an in-depth, mathematical examination of such models. Here, we consider a simple deterministic compartmental model with endogenous incorporation of human behavior (i.e., behavioral feedback) through transmission in a classic Susceptible-Exposed-Infectious-Recovered (SEIR) structure. Despite its simplicity, the SEIR structure with behavior (SEIRb) was shown to perform well in forecasting, especially compared to more complicated models. We contrast this model with an SEIR model that excludes endogenous incorporation of behavior. Both models assume permanent immunity to COVID-19, so we also consider a modification of the models which include waning immunity (SEIRS and SEIRSb). We perform equilibria, sensitivity, and identifiability analyses on all models and examine the fidelity of the models to replicate COVID-19 data across the United States. Endogenous incorporation of behavior significantly improves a model’s ability to produce realistic outbreaks. While the two endogenous models are similar with respect to identifiability and sensitivity, the SEIRSb model, with the more accurate assumption of the waning immunity, strengthens the initial SEIRb model by allowing for the existence of an endemic equilibrium, a realistic feature of COVID-19 dynamics. When fitting the model to data, we further consider the addition of simple seasonality affecting disease transmission to highlight the explanatory power of the models.