Post by Nadica (She/Her) on Dec 11, 2024 4:16:03 GMT
Targeting mutation sites in the omicron variant of SARS-CoV-2 as potential therapeutic strategy against COVID-19 by antiretroviral drugs - Published Nov 25, 2024
Highlights
•There were trends of mutations in the S protein of the omicron SARS-CoV-2 variant.
•The studied ARVds exhibited adequate solubility, distribution and partition coefficient.
•ARVds molecularly interacted with target sites of mutations.
Abstract
The multiple mutation of the spike (S) protein of the Omicron SARS-CoV-2 variant is a major concern, as it has been implicated in the severity of COVID-19 and its complications. These mutations have been attributed to COVID-19-infected immune-compromised individuals, with HIV patients being suspected to top the list. The present study investigated the mutation of the S protein of the omicron variant in comparison to the Delta and Wuhan variants. It also investigated the molecular interactions of antiretroviral drugs (ARVd) vis-à-vis dolutegravir, lamivudine, tenofovir-disoproxilfumarate and lenacapavir with the initiation and termination codons of the mRNAs of the mutated proteins of the omicron variant using computational tools. The complete genome sequences of the respective S proteins for omicron (OM066778.1), Delta (OK091006.1) and Wuhan (NC 045512.2) SARS-CoV-2 variants were retrieved from the National Center for Biotechnology Information (NCBI) database. Evolutionary analysis revealed high trends of mutations in the S protein of the omicron SARS-CoV-2 variant compared to the delta and Wuhan variants coupled with 68 % homology. The sequences of the translation initiation sites (TISs), translation termination sites (TTSs), high mutation region-1 (HMR1) and high region mutation-2 (HMR2) mRNAs were retrieved from the full genome of the omicron variant S protein. Molecular docking analysis revealed strong molecular interactions of ARVd with TISs, TTSs, HMR1 and HMR2 of the S protein mRNA. These results indicate mutations in the S protein of the Omicron SARS-CoV-2 variant compared to the Delta and Wuhan variants. These mutation points may present new therapeutic targets for COVID-19.
Highlights
•There were trends of mutations in the S protein of the omicron SARS-CoV-2 variant.
•The studied ARVds exhibited adequate solubility, distribution and partition coefficient.
•ARVds molecularly interacted with target sites of mutations.
Abstract
The multiple mutation of the spike (S) protein of the Omicron SARS-CoV-2 variant is a major concern, as it has been implicated in the severity of COVID-19 and its complications. These mutations have been attributed to COVID-19-infected immune-compromised individuals, with HIV patients being suspected to top the list. The present study investigated the mutation of the S protein of the omicron variant in comparison to the Delta and Wuhan variants. It also investigated the molecular interactions of antiretroviral drugs (ARVd) vis-à-vis dolutegravir, lamivudine, tenofovir-disoproxilfumarate and lenacapavir with the initiation and termination codons of the mRNAs of the mutated proteins of the omicron variant using computational tools. The complete genome sequences of the respective S proteins for omicron (OM066778.1), Delta (OK091006.1) and Wuhan (NC 045512.2) SARS-CoV-2 variants were retrieved from the National Center for Biotechnology Information (NCBI) database. Evolutionary analysis revealed high trends of mutations in the S protein of the omicron SARS-CoV-2 variant compared to the delta and Wuhan variants coupled with 68 % homology. The sequences of the translation initiation sites (TISs), translation termination sites (TTSs), high mutation region-1 (HMR1) and high region mutation-2 (HMR2) mRNAs were retrieved from the full genome of the omicron variant S protein. Molecular docking analysis revealed strong molecular interactions of ARVd with TISs, TTSs, HMR1 and HMR2 of the S protein mRNA. These results indicate mutations in the S protein of the Omicron SARS-CoV-2 variant compared to the Delta and Wuhan variants. These mutation points may present new therapeutic targets for COVID-19.