Post by Nadica (She/Her) on Oct 23, 2024 0:43:09 GMT
Key SARS-CoV-2 enzyme behind virus's infectiousness, researchers say - Published Oct 22, 2024
By Mary Van Beusekom, MS
SARS-CoV-2, the virus that causes COVID-19, is more infectious than severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) viruses because it contains an enzyme that can efficiently circumvent a host cell's innate defense mechanism, Kobe University–led researchers in Japan suggest in the Journal of Virology.
The innate immune system attaches the molecular tag ISG15 to SARS-CoV-2's nucleocapsid protein, which contains the virus's genetic material, inhibiting viral replication. The team's laboratory experiments suggest that the virus's papain-like protease (PLpro) can remove the tag, recovering its ability to assemble new viruses and escape the innate immune response.
Discovery may lead to more effective drugs
While the SARS and MERS viruses belong to the same virus family and also have an enzyme that can remove the ISG15 tag, their versions are less efficient and have a different primary target than that of SARS-CoV-2.
In a Kobe University news release today, senior author Ikuo Shoji, MD, PhD, said this finding may help guide the development of more effective and selective COVID-19 inhibitors that target SARS-CoV-2's nucleocapsid protein.
"We may be able to develop new antiviral drugs if we can inhibit the function of the viral enzyme that removes the ISG15 tag," he said. "Future therapeutic strategies may also include antiviral agents that directly target the nucleocapsid protein, or a combination of these two approaches."
Study Link: journals.asm.org/doi/10.1128/jvi.00855-24
Press Release: www.eurekalert.org/news-releases/1061645
By Mary Van Beusekom, MS
SARS-CoV-2, the virus that causes COVID-19, is more infectious than severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) viruses because it contains an enzyme that can efficiently circumvent a host cell's innate defense mechanism, Kobe University–led researchers in Japan suggest in the Journal of Virology.
The innate immune system attaches the molecular tag ISG15 to SARS-CoV-2's nucleocapsid protein, which contains the virus's genetic material, inhibiting viral replication. The team's laboratory experiments suggest that the virus's papain-like protease (PLpro) can remove the tag, recovering its ability to assemble new viruses and escape the innate immune response.
Discovery may lead to more effective drugs
While the SARS and MERS viruses belong to the same virus family and also have an enzyme that can remove the ISG15 tag, their versions are less efficient and have a different primary target than that of SARS-CoV-2.
In a Kobe University news release today, senior author Ikuo Shoji, MD, PhD, said this finding may help guide the development of more effective and selective COVID-19 inhibitors that target SARS-CoV-2's nucleocapsid protein.
"We may be able to develop new antiviral drugs if we can inhibit the function of the viral enzyme that removes the ISG15 tag," he said. "Future therapeutic strategies may also include antiviral agents that directly target the nucleocapsid protein, or a combination of these two approaches."
Study Link: journals.asm.org/doi/10.1128/jvi.00855-24
Press Release: www.eurekalert.org/news-releases/1061645