|
Post by Nadica (She/Her) on Jun 28, 2024 9:02:25 GMT
Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model Published April 4, 2024Abstract The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies. Keywords: wastewater-based epidemiology; SARS-CoV-2; COVID-19; wastewater; biodegradation; sewer network; spatiotemporal model; public health; early-warning system
|
|