Post by Nadica (She/Her) on Sept 16, 2024 1:59:33 GMT
The Long-term Complications of Covid-19 Infection - Published Sept 13, 2024
Context.—
As the Covid-19 pandemic continues into its 4th year, reports of long-term morbidity and mortality are now attracting attention. Recent studies suggest that Covid-19 survivors are at increased risk of common illnesses, such as myocardial infarction, diabetes mellitus and autoimmune disorders. Mortality may also be increased. This article will review the evidence that supports some of these observations and provide an opinion about their validity and their relevance to insured cohorts.
Background
Many Covid-19 survivors report protracted symptoms, sometimes lasting 3 years or more. These are collectively called post-acute sequelae of SARS-CoV-2 infection (PASC) or long Covid. They have been frequently described.1–4 In the past year, reports of long-term complications such as atrial fibrillation, heart failure, stroke and pulmonary embolism have emerged. In some reports these established disease entities are erroneously described as long Covid, generating confusion. The distinction is important: illness reported in Covid survivors are not restricted to the long Covid cohort. Thus, they are relevant to the majority of the North American population who have been infected by SARS-CoV-2, and not just the estimated 5-10% of individuals who belong to the long Covid cohort. This paper will examine the reports of increased incidence of cardiovascular diseases in both and will examine the reported long-term increase in mortality.
Cardiovascular disease after 1 and 2 years
Multiple studies have reported an increased risk of cardiovascular events at 1 year. A February 2022 analysis of 153,760 US veterans, followed for 1 year after Covid-19 infection, reported an increased risk of cerebrovascular disease (HR 1.53), ischemic heart disease (HR 1.66), thromboembolic disease (HR 2.39) and atrial fibrillation (HR 1.71).5 Risk was greatest in those hospitalized and those with pre-morbid illnesses. However, risk was also elevated in outpatients, who constituted the vast majority of the cohort. These findings have been corroborated in 2 further studies. In a 2023 analysis of 690,000 Covid-19 survivors, drawn from the TriNetX database–self-described as the world’s largest global Covid-19 dataset–there was an increased risk of cerebrovascular disease (HR 1.6), ischemic heart disease (HR 2.8), thromboembolic disease (HR 2.6) and atrial fibrillation (HR 2.4) at 1 year.6 In contrast to the VA study which examined a predominantly older male population, the subjects in this study were younger, with mean age 44, and 57% were female. Risk was higher in the >65 age group and was not limited to inpatients. In a May 2023 Lancet retrospective analysis of 535,000 Hong Kong (HK) and 16,000 UK Covid 19 survivors, similar hazard ratios were recorded for stroke (HR 1.2), ischemic heart disease (HR 1.32), atrial fibrillation (HR 1.31) and deep venous thrombosis (HR 1.74).7 However, it is worth noting that while follow-up was described as 28 months for the HK cohort and 17 months for the UK cohort, the median follow-up for the HK group was 146 days and was 243 days for the UK cohort, somewhat limiting the conclusions of true impact at 1 year. Contradicting these studies, a prospective analysis of 17,000 Covid-19 survivors in the UK Biobank, did not document an increased risk of cardiovascular outcomes amongst outpatients, with the exception of thromboembolic disease (HR 2.7).8 An August 2023 analysis of 138,000 VA Covid-19 survivors followed for 2 years– the longest follow-up period to date– reported that the risk of complications in outpatients had returned to baseline at 6 months.9 In contrast, the risk for multiple cardiovascular and thromboembolic complications in the hospitalized cohort remained elevated at 2 years. None of these 5 studies was limited to individuals with long Covid, but similar findings have been reported in this group: a recent analysis of 13,435 individuals who had been diagnosed with long Covid, based on a typical array of symptoms, reported increased risks at 1 year for ischemic heart disease (HR 1.7), ischemic stroke (HR 2.1) and pulmonary embolism (HR 3.6).10
These studies document a fairly consistent, increased risk of cardiovascular complications among Covid-19 survivors. However, important questions remain. Amongst these: does increasing population immunity and vaccination change the risk? Is the magnitude of risk similar for all SARS CoV-2 variants? Does reinfection increase the risk? Answers to some are available. Vaccination appears to attenuate the risk: a Korean study of 592,000 individuals post-Covid-19 infection, showed that vaccination decreased the risk of heart attack and stroke by approximately 50%.11 This finding was replicated in a large US cohort where major adverse cardiovascular events were reduced by a similar amount for full vaccination, and by 25% for partial vaccination.12 Thus, while vaccination does not eliminate long-term complications, it appears to provide a substantial protective effect.
Reinfection may increase the risk of sequelae. In a large US VA cohort of 440,000 Covid survivors, of whom 40,000 had one or more SARS-CoV-2 reinfections, the risk of cardiovascular disorders was increased (HR 3.02), when compared to a single infection.13 Moreover, this risk was not modified by vaccination.
The impact of different variants is less clear. Most of the described studies were conducted in 2020-2021 when delta and pre-delta variants predominated. It is unclear whether similar outcomes would characterize infection with Omicron variants, which remain dominant in most countries since November 2021. Interestingly, the risk of cardiovascular complications in the cohort of Hong Kong survivors described above, where the Omicron was the prevalent strain, was no different than among the comparator UK Biobank cohort, where pre-Omicron strains were prevalent.7
Is there extra long-term mortality after Covid-19 infection?
Extra mortality has been reported by several studies.6,8,14–18 A 2021 US analysis of 400 Covid-19 survivors, documented increased mortality (HR 2.5) at 1 year.14 The additional risk was confined to individuals who had been hospitalized. In 2022, 3 studies reported excess mortality in 3 different countries. The first, an Estonian whole-population study of 66,000 Covid-19 survivors, of whom 8% were hospitalized, reported a 3-fold increase in mortality at 12 months.15 Mortality was particularly elevated in the first 5 weeks following infection. For those over age 60, increased mortality persisted until 12 months (HR 2.8). However, for those less than age 60, mortality was not increased after 35 days. The second, an analysis of 690,000 Covid-19 survivors from the TriNetX database also reported increased 1-year mortality risk (HR 1.6).6 This was largely explained by excess deaths in individuals over age 65; below age 45 risk was not increased. For the outpatient cohort the risk of mortality was lower than that of the comparison group (HR 0.46). The third, a study of 25,000 Covid-19 survivors drawn from the UK Biobank, reported increased mortality risk at 20 months, for those with severe Covid infection (HR 14.7), but also an increased risk for those with mild disease (HR 1.23).16 Stratification by age was not provided.
In 2023 4 further studies reported similar, but at times quantitatively different results. Two analyses drew on the UK Biobank cohort. In the first, a prospective evaluation of 7,800 SARS-CoV-2 PCR positive individuals, increased mortality was reported for the study group at 18 months (HR 5.0), when compared to both a contemporary and an historical cohort.17 For the non-severe cases the mortality risk remained elevated (HR 4.8). The second study, already described above– a comparative analysis of 7600 Covid survivors from the UK Biobank and 530,000 Covid survivors in Hong Kong–reported increased mortality (HR 4.16) after 17 months for the former and 28 months for the latter.7 The risk of mortality was higher in the UK than the HK cohort, a difference the authors posited was due to Omicron being the dominant variant in HK during the study period. The risk remained elevated, but less so, for younger cohorts and for mild Covid-19 infections.
Finally, 2 large US studies recently reported mortality at 2 years. In the first, an analysis of 138,000 US veteran Covid-19 survivors with 5.9 million controls, the risk of death for the hospitalized cohort remained elevated at 2 years (HR 1.29).8 In contrast, the risk of death for the outpatient cohort returned to baseline at 6 months. Breakdown of risk by age-group was not provided. The second study, also of US veterans, reported similar findings. In a cohort of 280,000 Covid-19 survivors the risk of death remained elevated at 2 years (HR 2.0).18 The risk was highest in the first 90 days (HR 6.3) and decreased at 6 months (HR 1.18). Thereafter, the risk in Covid-19 survivors was slightly less than the control group (HR 0.89). A post-hoc subgroup analysis examined and refuted the possibility that accelerated mortality in the control group could have explained the lower mortality in Covid-19 survivors. The risk of death in hospitalized individuals remained elevated at 2 years (HR 1.22).
How Plausible is this Information?
The studies described above command attention by virtue of their size and the consistency of their findings in different populations, and in different countries. They are also supported by the observations of long-term pathophysiologic abnormalities following SARS-CoV-2 infection, such as ongoing inflammation, persistence of virus, and immune system dysfunction. However, the negative ledger is also substantial. Observational studies such as these, no matter how well-designed, remain open to many types of bias. Reliance on diagnostic codes, prescription records, laboratory results and tallies of clinical visits, to establish disease incidence, is intrinsically error-prone and makes cross-study comparisons difficult. Perhaps more importantly, the cohorts described above were different in many respects, varying from the older, male-predominant cohort of the US VA system to the younger healthier cohort of the UK Biobank. Further, cohorts were constituted during the first year of the pandemic, at a time when healthcare delivery was disrupted, lockdowns were in effect, vaccination and antivirals were largely unavailable, and population immunity levels were low. Thus, it could be argued that the observed outcomes are better explained by an evolving pandemic, rather than solely SARS-CoV-2 infection. This could also explain the most recent reports that after 2 years of follow-up, the risk of both Covid-19 complications and mortality, in most of those infected (i.e., the non-hospitalized), is no longer elevated. It also evident that most of the reported extra mortality is occurring in the early months following infection, where survival curves separate rapidly.6,10,15,18
Are these findings relevant to an insured population? ‘Partially’ is probably the best answer. The most important observation is that hospitalization, and in-particular an intensive care unit admission, is the dominant risk factor for both morbidity and mortality. This risk appears to persist up to 2 years. The second important risk element is the presence of comorbid conditions. This observation raises the interesting question of what exactly causes the extra mortality. Is it due to ‘protracted’ SARS-Co-V-2 infection or is it caused by a recognized complication of Covid-19, such as pulmonary fibrosis or acute kidney injury? Or is it explained by an aggravation of a comorbid illness? Or is it a complication of long Covid? There is a likelihood that all these mechanisms were at play in the cohorts under study.
For non-hospitalized individuals, and those that are healthy, the evidence for extra morbidity and mortality after the first 3-6 months is far from conclusive. For the long Covid cohort, the evidence for additional mortality requires further supporting evidence. As the prevalence of co-morbid conditions is lower in insured populations, one might reasonably expect, based on current evidence, that longer-term morbidity and mortality due to Covid-19 infection will be minimally affected.
References
1.Davis H, McCorkell L, Vogel, J. et al Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21, 133–146 (2023). doi.org/10.1038/s41579-022-00846-2
2.Meagher T. Long COVID - An Early Perspective. J Insur Med. 2021 Jan 1;49(1):19–23. doi: 10.17849/insm-49-1-1-5.1. PMID: 33784738.
3.Meagher T. Long COVID – One year On. J Insur Med. 2022 Jan 1;49:1–6. doi: 10.17849/insm-49-3-1-6.1. PMID: 33561352.
4.Meagher T. Long Covid - Into the Third Year. J Insur Med 2023;50(1):54–58. doi.org/10.17849/insm-50-1-54-58.1
5.Xie Y, Xu E, Bowe B et al Long-term cardiovascular outcomes of COVID-19. Nat Med 28, 583–590 (2022). doi.org/10.1038/s41591-022-01689-3
6.Wang W, Wang CY, Wang SI et al Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. eClinicalMedicine. 2022 Nov;53:101619. doi: 10.1016/j.eclinm.2022.101619
7.Lam I, Wong C, Zhang, R et al Long-term post-acute sequelae of COVID-19 infection: a retrospective, multi-database cohort study in Hong Kong and the UK. eClinicalMedicine Vol. 60 Published: May 11, 2023. doi: doi.org/10.1016/j.eclinm.2023.102000
8.Raisi-Estabragh Z, Cooper J, Salih A, et al Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank Heart 2023;109:119–126.
9.Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat Med 29, 2347–2357 (2023). doi.org/10.1038/s41591-023-02521-2
10.DeVries A, Shambhu S, Sloop S et al One-Year Adverse Outcomes Among US Adults With Post–COVID-19 Condition vs Those Without COVID-19 in a Large Commercial Insurance Database. JAMA Health Forum. 2023;4(3):e230010. doi:10.1001/jamahealthforum.2023.0010
11.Kim Y, Huh K, Park Y et al Association Between Vaccination and Acute Myocardial Infarction and Ischemic Stroke After COVID-19 Infection. JAMA. 2022;328(9):887–889. doi:10.1001/jama.2022.12992
12.Jiang J, Chan L, Kauffman J, et al Impact of Vaccination on Major Adverse Cardiovascular Events in Patients With COVID-19 Infection. J Am Coll Cardiol. 2023 Mar, 81(9):928–930. doi.org/10.1016/j.jacc.2022.12.006
13.Bowe B, Xie, Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med 28, 2398–2405 (2022). doi.org/10.1038/s41591-022-02051-3
14.Mainous AG, Rooks BJ, Wu, et al COVID-19 post-acute sequelae among adults: 12 month mortality risk. Front Med (Lausanne). 2021;8:778434. doi:10.3389/fmed.2021.778434
15.Uuskula A, Jurgenson T, Pisarev H et al Long-term mortality following SARS-CoV-2 infection: A national cohort study from Estonia. The Lancet Regional Health - Europe 2022;18:100394 Published online 29 April 2022. doi.org/10.1016/j.lanepe.2022.100394
16.Xiang Y, Zhang R, Qiu G. et al Association of Covid-19 with risks of hospitalization and mortality from other disorders post-infection: A study of the UK Biobank. medRxiv doi: doi.org/10.1101/2022.03.23.22272811
17.Wan E, Mathur S, Zhang R et al Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: a prospective cohort in UK Biobank, Cardiovascular Research, Volume 119, Issue 8, June 2023, 1718–1727. doi.org/10.1093/cvr/cvac195
18.Iwashyna TJ, Seelye S, Berkowitz TS, et al Late Mortality After COVID-19 Infection Among US Veterans vs Risk-Matched Comparators: A 2-Year Cohort Analysis. JAMA Intern Med. Published online August 21, 2023. doi:10.1001/jamainternmed.2023.3587
Context.—
As the Covid-19 pandemic continues into its 4th year, reports of long-term morbidity and mortality are now attracting attention. Recent studies suggest that Covid-19 survivors are at increased risk of common illnesses, such as myocardial infarction, diabetes mellitus and autoimmune disorders. Mortality may also be increased. This article will review the evidence that supports some of these observations and provide an opinion about their validity and their relevance to insured cohorts.
Background
Many Covid-19 survivors report protracted symptoms, sometimes lasting 3 years or more. These are collectively called post-acute sequelae of SARS-CoV-2 infection (PASC) or long Covid. They have been frequently described.1–4 In the past year, reports of long-term complications such as atrial fibrillation, heart failure, stroke and pulmonary embolism have emerged. In some reports these established disease entities are erroneously described as long Covid, generating confusion. The distinction is important: illness reported in Covid survivors are not restricted to the long Covid cohort. Thus, they are relevant to the majority of the North American population who have been infected by SARS-CoV-2, and not just the estimated 5-10% of individuals who belong to the long Covid cohort. This paper will examine the reports of increased incidence of cardiovascular diseases in both and will examine the reported long-term increase in mortality.
Cardiovascular disease after 1 and 2 years
Multiple studies have reported an increased risk of cardiovascular events at 1 year. A February 2022 analysis of 153,760 US veterans, followed for 1 year after Covid-19 infection, reported an increased risk of cerebrovascular disease (HR 1.53), ischemic heart disease (HR 1.66), thromboembolic disease (HR 2.39) and atrial fibrillation (HR 1.71).5 Risk was greatest in those hospitalized and those with pre-morbid illnesses. However, risk was also elevated in outpatients, who constituted the vast majority of the cohort. These findings have been corroborated in 2 further studies. In a 2023 analysis of 690,000 Covid-19 survivors, drawn from the TriNetX database–self-described as the world’s largest global Covid-19 dataset–there was an increased risk of cerebrovascular disease (HR 1.6), ischemic heart disease (HR 2.8), thromboembolic disease (HR 2.6) and atrial fibrillation (HR 2.4) at 1 year.6 In contrast to the VA study which examined a predominantly older male population, the subjects in this study were younger, with mean age 44, and 57% were female. Risk was higher in the >65 age group and was not limited to inpatients. In a May 2023 Lancet retrospective analysis of 535,000 Hong Kong (HK) and 16,000 UK Covid 19 survivors, similar hazard ratios were recorded for stroke (HR 1.2), ischemic heart disease (HR 1.32), atrial fibrillation (HR 1.31) and deep venous thrombosis (HR 1.74).7 However, it is worth noting that while follow-up was described as 28 months for the HK cohort and 17 months for the UK cohort, the median follow-up for the HK group was 146 days and was 243 days for the UK cohort, somewhat limiting the conclusions of true impact at 1 year. Contradicting these studies, a prospective analysis of 17,000 Covid-19 survivors in the UK Biobank, did not document an increased risk of cardiovascular outcomes amongst outpatients, with the exception of thromboembolic disease (HR 2.7).8 An August 2023 analysis of 138,000 VA Covid-19 survivors followed for 2 years– the longest follow-up period to date– reported that the risk of complications in outpatients had returned to baseline at 6 months.9 In contrast, the risk for multiple cardiovascular and thromboembolic complications in the hospitalized cohort remained elevated at 2 years. None of these 5 studies was limited to individuals with long Covid, but similar findings have been reported in this group: a recent analysis of 13,435 individuals who had been diagnosed with long Covid, based on a typical array of symptoms, reported increased risks at 1 year for ischemic heart disease (HR 1.7), ischemic stroke (HR 2.1) and pulmonary embolism (HR 3.6).10
These studies document a fairly consistent, increased risk of cardiovascular complications among Covid-19 survivors. However, important questions remain. Amongst these: does increasing population immunity and vaccination change the risk? Is the magnitude of risk similar for all SARS CoV-2 variants? Does reinfection increase the risk? Answers to some are available. Vaccination appears to attenuate the risk: a Korean study of 592,000 individuals post-Covid-19 infection, showed that vaccination decreased the risk of heart attack and stroke by approximately 50%.11 This finding was replicated in a large US cohort where major adverse cardiovascular events were reduced by a similar amount for full vaccination, and by 25% for partial vaccination.12 Thus, while vaccination does not eliminate long-term complications, it appears to provide a substantial protective effect.
Reinfection may increase the risk of sequelae. In a large US VA cohort of 440,000 Covid survivors, of whom 40,000 had one or more SARS-CoV-2 reinfections, the risk of cardiovascular disorders was increased (HR 3.02), when compared to a single infection.13 Moreover, this risk was not modified by vaccination.
The impact of different variants is less clear. Most of the described studies were conducted in 2020-2021 when delta and pre-delta variants predominated. It is unclear whether similar outcomes would characterize infection with Omicron variants, which remain dominant in most countries since November 2021. Interestingly, the risk of cardiovascular complications in the cohort of Hong Kong survivors described above, where the Omicron was the prevalent strain, was no different than among the comparator UK Biobank cohort, where pre-Omicron strains were prevalent.7
Is there extra long-term mortality after Covid-19 infection?
Extra mortality has been reported by several studies.6,8,14–18 A 2021 US analysis of 400 Covid-19 survivors, documented increased mortality (HR 2.5) at 1 year.14 The additional risk was confined to individuals who had been hospitalized. In 2022, 3 studies reported excess mortality in 3 different countries. The first, an Estonian whole-population study of 66,000 Covid-19 survivors, of whom 8% were hospitalized, reported a 3-fold increase in mortality at 12 months.15 Mortality was particularly elevated in the first 5 weeks following infection. For those over age 60, increased mortality persisted until 12 months (HR 2.8). However, for those less than age 60, mortality was not increased after 35 days. The second, an analysis of 690,000 Covid-19 survivors from the TriNetX database also reported increased 1-year mortality risk (HR 1.6).6 This was largely explained by excess deaths in individuals over age 65; below age 45 risk was not increased. For the outpatient cohort the risk of mortality was lower than that of the comparison group (HR 0.46). The third, a study of 25,000 Covid-19 survivors drawn from the UK Biobank, reported increased mortality risk at 20 months, for those with severe Covid infection (HR 14.7), but also an increased risk for those with mild disease (HR 1.23).16 Stratification by age was not provided.
In 2023 4 further studies reported similar, but at times quantitatively different results. Two analyses drew on the UK Biobank cohort. In the first, a prospective evaluation of 7,800 SARS-CoV-2 PCR positive individuals, increased mortality was reported for the study group at 18 months (HR 5.0), when compared to both a contemporary and an historical cohort.17 For the non-severe cases the mortality risk remained elevated (HR 4.8). The second study, already described above– a comparative analysis of 7600 Covid survivors from the UK Biobank and 530,000 Covid survivors in Hong Kong–reported increased mortality (HR 4.16) after 17 months for the former and 28 months for the latter.7 The risk of mortality was higher in the UK than the HK cohort, a difference the authors posited was due to Omicron being the dominant variant in HK during the study period. The risk remained elevated, but less so, for younger cohorts and for mild Covid-19 infections.
Finally, 2 large US studies recently reported mortality at 2 years. In the first, an analysis of 138,000 US veteran Covid-19 survivors with 5.9 million controls, the risk of death for the hospitalized cohort remained elevated at 2 years (HR 1.29).8 In contrast, the risk of death for the outpatient cohort returned to baseline at 6 months. Breakdown of risk by age-group was not provided. The second study, also of US veterans, reported similar findings. In a cohort of 280,000 Covid-19 survivors the risk of death remained elevated at 2 years (HR 2.0).18 The risk was highest in the first 90 days (HR 6.3) and decreased at 6 months (HR 1.18). Thereafter, the risk in Covid-19 survivors was slightly less than the control group (HR 0.89). A post-hoc subgroup analysis examined and refuted the possibility that accelerated mortality in the control group could have explained the lower mortality in Covid-19 survivors. The risk of death in hospitalized individuals remained elevated at 2 years (HR 1.22).
How Plausible is this Information?
The studies described above command attention by virtue of their size and the consistency of their findings in different populations, and in different countries. They are also supported by the observations of long-term pathophysiologic abnormalities following SARS-CoV-2 infection, such as ongoing inflammation, persistence of virus, and immune system dysfunction. However, the negative ledger is also substantial. Observational studies such as these, no matter how well-designed, remain open to many types of bias. Reliance on diagnostic codes, prescription records, laboratory results and tallies of clinical visits, to establish disease incidence, is intrinsically error-prone and makes cross-study comparisons difficult. Perhaps more importantly, the cohorts described above were different in many respects, varying from the older, male-predominant cohort of the US VA system to the younger healthier cohort of the UK Biobank. Further, cohorts were constituted during the first year of the pandemic, at a time when healthcare delivery was disrupted, lockdowns were in effect, vaccination and antivirals were largely unavailable, and population immunity levels were low. Thus, it could be argued that the observed outcomes are better explained by an evolving pandemic, rather than solely SARS-CoV-2 infection. This could also explain the most recent reports that after 2 years of follow-up, the risk of both Covid-19 complications and mortality, in most of those infected (i.e., the non-hospitalized), is no longer elevated. It also evident that most of the reported extra mortality is occurring in the early months following infection, where survival curves separate rapidly.6,10,15,18
Are these findings relevant to an insured population? ‘Partially’ is probably the best answer. The most important observation is that hospitalization, and in-particular an intensive care unit admission, is the dominant risk factor for both morbidity and mortality. This risk appears to persist up to 2 years. The second important risk element is the presence of comorbid conditions. This observation raises the interesting question of what exactly causes the extra mortality. Is it due to ‘protracted’ SARS-Co-V-2 infection or is it caused by a recognized complication of Covid-19, such as pulmonary fibrosis or acute kidney injury? Or is it explained by an aggravation of a comorbid illness? Or is it a complication of long Covid? There is a likelihood that all these mechanisms were at play in the cohorts under study.
For non-hospitalized individuals, and those that are healthy, the evidence for extra morbidity and mortality after the first 3-6 months is far from conclusive. For the long Covid cohort, the evidence for additional mortality requires further supporting evidence. As the prevalence of co-morbid conditions is lower in insured populations, one might reasonably expect, based on current evidence, that longer-term morbidity and mortality due to Covid-19 infection will be minimally affected.
References
1.Davis H, McCorkell L, Vogel, J. et al Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21, 133–146 (2023). doi.org/10.1038/s41579-022-00846-2
2.Meagher T. Long COVID - An Early Perspective. J Insur Med. 2021 Jan 1;49(1):19–23. doi: 10.17849/insm-49-1-1-5.1. PMID: 33784738.
3.Meagher T. Long COVID – One year On. J Insur Med. 2022 Jan 1;49:1–6. doi: 10.17849/insm-49-3-1-6.1. PMID: 33561352.
4.Meagher T. Long Covid - Into the Third Year. J Insur Med 2023;50(1):54–58. doi.org/10.17849/insm-50-1-54-58.1
5.Xie Y, Xu E, Bowe B et al Long-term cardiovascular outcomes of COVID-19. Nat Med 28, 583–590 (2022). doi.org/10.1038/s41591-022-01689-3
6.Wang W, Wang CY, Wang SI et al Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. eClinicalMedicine. 2022 Nov;53:101619. doi: 10.1016/j.eclinm.2022.101619
7.Lam I, Wong C, Zhang, R et al Long-term post-acute sequelae of COVID-19 infection: a retrospective, multi-database cohort study in Hong Kong and the UK. eClinicalMedicine Vol. 60 Published: May 11, 2023. doi: doi.org/10.1016/j.eclinm.2023.102000
8.Raisi-Estabragh Z, Cooper J, Salih A, et al Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank Heart 2023;109:119–126.
9.Bowe, B., Xie, Y. & Al-Aly, Z. Postacute sequelae of COVID-19 at 2 years. Nat Med 29, 2347–2357 (2023). doi.org/10.1038/s41591-023-02521-2
10.DeVries A, Shambhu S, Sloop S et al One-Year Adverse Outcomes Among US Adults With Post–COVID-19 Condition vs Those Without COVID-19 in a Large Commercial Insurance Database. JAMA Health Forum. 2023;4(3):e230010. doi:10.1001/jamahealthforum.2023.0010
11.Kim Y, Huh K, Park Y et al Association Between Vaccination and Acute Myocardial Infarction and Ischemic Stroke After COVID-19 Infection. JAMA. 2022;328(9):887–889. doi:10.1001/jama.2022.12992
12.Jiang J, Chan L, Kauffman J, et al Impact of Vaccination on Major Adverse Cardiovascular Events in Patients With COVID-19 Infection. J Am Coll Cardiol. 2023 Mar, 81(9):928–930. doi.org/10.1016/j.jacc.2022.12.006
13.Bowe B, Xie, Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med 28, 2398–2405 (2022). doi.org/10.1038/s41591-022-02051-3
14.Mainous AG, Rooks BJ, Wu, et al COVID-19 post-acute sequelae among adults: 12 month mortality risk. Front Med (Lausanne). 2021;8:778434. doi:10.3389/fmed.2021.778434
15.Uuskula A, Jurgenson T, Pisarev H et al Long-term mortality following SARS-CoV-2 infection: A national cohort study from Estonia. The Lancet Regional Health - Europe 2022;18:100394 Published online 29 April 2022. doi.org/10.1016/j.lanepe.2022.100394
16.Xiang Y, Zhang R, Qiu G. et al Association of Covid-19 with risks of hospitalization and mortality from other disorders post-infection: A study of the UK Biobank. medRxiv doi: doi.org/10.1101/2022.03.23.22272811
17.Wan E, Mathur S, Zhang R et al Association of COVID-19 with short- and long-term risk of cardiovascular disease and mortality: a prospective cohort in UK Biobank, Cardiovascular Research, Volume 119, Issue 8, June 2023, 1718–1727. doi.org/10.1093/cvr/cvac195
18.Iwashyna TJ, Seelye S, Berkowitz TS, et al Late Mortality After COVID-19 Infection Among US Veterans vs Risk-Matched Comparators: A 2-Year Cohort Analysis. JAMA Intern Med. Published online August 21, 2023. doi:10.1001/jamainternmed.2023.3587