Post by Nadica (She/Her) on Aug 2, 2024 2:48:01 GMT
The rising SARS-CoV-2 JN.1 variant: evolution, infectivity, immune escape, and response strategies - Published July 29, 2024
Abstract
The JN.1 variant of COVID-19 has emerged as the dominant strain worldwide since the end of 2023. As a subclade of the BA.2.86 variant, JN.1 harbors a unique combination of mutations inherited from the BA.2.86 lineage, notably featuring the novel L455S mutation within its receptor-binding motif. This mutation has been linked to increased transmissibility and enhanced immune evasion capabilities. During the rise of JN.1, evidence of resistance to various monoclonal antibodies and reduced cross-neutralization effects of the XBB.1.5 vaccine have been observed. Although the public health threat posed by the JN.1 variant appears relatively low, concerns persist regarding its evolutionary trajectory under immune pressure. This review provides a comprehensive overview of the evolving JN.1 variant, highlighting the need for continuous monitoring and investigation of new variants that could lead to widespread infection. It assesses the efficacy of current vaccines and therapeutics against emerging variants, particularly focusing on immunocompromised populations. Additionally, this review summarizes potential vaccine advancements and clinical treatments for COVID-19, offering insights to optimize prevention and treatment strategies. This review thoroughly evaluates the JN.1 variant's impact on public health and its implications for future vaccine and therapeutic development, contributing to ongoing efforts to mitigate the risk of virus transmission and disease severity.
Abstract
The JN.1 variant of COVID-19 has emerged as the dominant strain worldwide since the end of 2023. As a subclade of the BA.2.86 variant, JN.1 harbors a unique combination of mutations inherited from the BA.2.86 lineage, notably featuring the novel L455S mutation within its receptor-binding motif. This mutation has been linked to increased transmissibility and enhanced immune evasion capabilities. During the rise of JN.1, evidence of resistance to various monoclonal antibodies and reduced cross-neutralization effects of the XBB.1.5 vaccine have been observed. Although the public health threat posed by the JN.1 variant appears relatively low, concerns persist regarding its evolutionary trajectory under immune pressure. This review provides a comprehensive overview of the evolving JN.1 variant, highlighting the need for continuous monitoring and investigation of new variants that could lead to widespread infection. It assesses the efficacy of current vaccines and therapeutics against emerging variants, particularly focusing on immunocompromised populations. Additionally, this review summarizes potential vaccine advancements and clinical treatments for COVID-19, offering insights to optimize prevention and treatment strategies. This review thoroughly evaluates the JN.1 variant's impact on public health and its implications for future vaccine and therapeutic development, contributing to ongoing efforts to mitigate the risk of virus transmission and disease severity.